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Appendix S1. Bayesian geostatistical modeling 

Bayesian geostatistical variable selection 

A Bayesian geostatistical logistic regression model, adopting a stochastic search variable 

selection approach, was used to determine the most important predictors of fever prevalence 

and their functional form [1]. ITN coverage measures were grouped into use and ownership. 

Only one (or none) ITN measure among those defining ownership and one (or none) ITN 

measure among those defining use [2] was selected. For each ITN coverage measure !! in 

the ownership group, a categorical indicator "!	, was introduced to represent exclusion of the 

variable from the model ("! = 1), or inclusion of one of the ITN ownership measure i.e. 

%hh1itn ("! = 2), %hh1itn4two ("! = 3) and %pp1itn '"! = 4). A similar definition was 

adopted for the ITN use coverage measure i.e. exclusion of the variable from the model ("! =

1), inclusion of %ppslept ("! = 2), %chslept ("! = 3) and %itnused '"! = 4). The ITN 

measure with the highest probability of inclusion in each category was included in the final 

model.  

For the environmental/climatic variables except of land cover types, variable selection 

compared their linear and categorical forms and selected the one that had the highest 

probability of inclusion or neither of the two forms. The categorical forms were generated 

based on the quartiles of variables. We introduced an indicator "!	 for each 

environmental/climatic covariate !!  which defines exclusion of the variable from the model 

("! = 1), inclusion in a categorical ("! = 2) or linear ("! = 3) form.  

For childhood diseases, vaccinations, treatments,  health care seeking characteristics, 

socio-demographics and land cover types, a binary indicator parameter "!	suggesting presence 

("! = 1) or absence ("! = 0) of the predictor from the model was introduced. "! has a 

probability mass function ∏ ,#
$!(&")!

#() , where ,# denotes the inclusion probabilities, - =
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(1,2,3,4), e.g. for ITN coverage measures so that ∑ ,#
!
#() = 1 and 2#(. ) is the Dirac function, 

2#'"!) = 4(5) = 6
1, 74	"! = -
0, 74	"! ≠ -.  

For inclusion probabilities of ITN use and ownership, a non-informative Dirichlet 

distribution was adopted with hyper parameters : = (1,1,1,1)*, that is, ; =

(,), ,+, ,,,,.)*~=7>7?ℎABC(4, :). A similar distribution was adopted for the inclusion 

probabilities of environmental/climatic factors. For childhood diseases, vaccinations, 

treatments, health care seeking characteristics, socio-demographics and land cover types, a 

Bernoulli prior with an equal inclusion or exclusion probability was assumed for the indicator 

i.e. "!~DB>E(0.5). Also, inverse Gamma priors with parameters (2.01, 1.01) were assumed 

for the precision hyper parameters G!+. The predictors identified as important are those with 

posterior inclusion probability greater than or equal to 50% [3].  

We assumed a spike and slab prior for regression coefficient H! corresponding to the 

corresponding covariate, !! i.e. for the coefficient H! of the predictor in linear form we take 

H!~'1 − 2)("!))J'0, K/G!+) + 2)("!)J(0, G!+) proposing a non-informative prior for H! in 

case !! is included in the model in a linear form (slab) and an informative normal prior with 

variance close to zero (i.e. K/ =	100,) shrinking H! to zero (spike) if !! is excluded from 

the model. Similarly, for the coefficient MH!,1N1(),..,3 corresponding to the categorical form of 

!! with L categories, we assume that H!,1~2+'"!)J'0, G!,1+ ) + (1 − 2+)J'0, O/G!,1+ ) 

Bayesian geostatistical logistic regression model with spatially varying effects of 

childhood diseases 

A Bayesian geostatistical logistic regression model [4] was fitted to quantify the effects of 

childhood diseases on the fever prevalence. The model included spatially varying coefficients 

for childhood diseases adjusted for socio-demographic factors, vaccinations, health care 

seeking characteristics, treatments, ITN use and ownership and climatic/environmental 
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factors. The model assesses the effects of childhood diseases at a regional level using 

spatially varying coefficients [2] and is formulated assuming a conditional autoregressive 

(CAR) prior distribution [5]. The CAR introduces a neighbour-based spatial structure for the 

regression coefficients for each childhood disease effect [6]. Neighbours were defined as the 

adjacent areas for each region. To adjust for spatial correlation present in the fever prevalence 

due to similar exposure effect in neighbouring clusters, cluster-specific random effects were 

introduced into the model. The cluster random effects were assumed to arise from a Gaussian 

stationary process with a covariance matrix capturing correlation between any pair of cluster 

locations as a function of their interlocation distances. 

Let P4# be the binary outcome for child 7 at location Q# taking values 1 and 0 when 

fever is present or absent respectively, R5(Q#) be the vector of socio-demographic factors, 

vaccinations, health care seeking characteristics, treatments, ITN use and ownership and 

climatic/environmental factors and S6(Q#) be the prevalence of disease T at location Q#. 

P4# is assumed to follow a Bernoulli distribution P4#~UB>(V4#) and is related to its 

predictors using a logistic regression model as follows;  

AWX7C'V4#) = H/+Y*R5(Q#) + ∑ 'D6 + Z67(#))
*8

6() S6(Q#) 	+[(Q#) + \# 	 where V4# is 

the presence or absence of fever of child 7 at location Q#, 	 Y* = 'H), … , H!)	is the vector of 

regression coefficients with exp(H1) , A = 1,…V, corresponding to the odds ratio. [(Q#) is a 

cluster-specific random frailty which captures spatial correlation in the fever prevalence due 

to similar exposure effect in neighbouring clusters. We modeled a(Q) =

([(Q)),[(Q+), … ,[(Q9))* by a Gaussian process, i.e.  a(Q)~J(0,S), where Σ is the 

variance-covariance matrix and each element is defined by an exponential correlation 

function of the distance T71 between locations Q7 and Q1, that is S71 = b+exp	(−T71c) [4]. 

The parameter b+ gives the variance of the spatial process and c is a smoothing parameter 

that controls the rate of correlation decay with distance. For the exponential correlation 
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function, 0:;<	(/./=)>  determines the distance at which the correlation drops to 0.05 (i.e. 

effective range of spatial process). Non-spatial variation is estimated by the random 

effects	\#, assumed independent and normally distributed with mean 0 and variance  b?+ .  

Our model assumed that the relation between childhood diseases and fever prevalence 

varied across regions by including disease specific spatially varying coefficients, D6 +

Z76 ,	where D6 is the effect of the disease T = 1,…=  on fever prevalence at country 

(national) level and d@ = (Z6), … , Z67)A are the varying effects at regional (sub-national) 

levels e = 1,…f with e(-) indicating the region  e  corresponding to the location Q#.We 

introduced spatial dependence among the regions via a conditional autoregressive (CAR) 

prior for d@, that is d@~J(g, Ω6) with Ω6 = b6+(" − ij)0)Δ. 	b6+ is the variance of spatially 

varying disease effects,  Δ is a diagonal matrix with entries Δ77 = X70)where  X7 is the 

number of neighbours of region e, i measures overall spatial dependence and j is the 

adjacency matrix with normalized entries that is j71 = l71/X7, l71 is 1 if region e neighbors 

A  and 0 otherwise [4].  

Model specification was completed by assigning prior distributions to model 

parameters. We assumed inverse gamma priors for all spatial variances with known 

parameters, i.e. b+, b6+~"n(2.01, 1.01), a uniform prior distribution for c~o(p, D), where p  

and D chosen such that the effective range is within the maximum and minimum distances of 

the observed locations [7] and a uniform prior for i~o(q)0), q+0)) where q), q+ are the 

smallest and largest eigenvalue of Δ0) +B CΔ) +B  [4]. Non-informative normal priors were 

adopted for the regression coefficients H1 , D6~J(0, 10,) for A = 1,…V and T = 1,…=. The 

joint posterior distribution of the model is given by  

∏ [	P4(Q#)	|Y, D6 ,['Q#)5 Z67 , R5(Q4), u@'Q#)][	a(Q)|b+, c][d@|	b6+, i][Y, D6 , b+, b6+, i, c]. To 

select priors, we made assumptions based on the direction an estimate could take. For 
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example, for regression coefficients, a normal distribution was assumed since these estimates 

could take on negative or positive values. A gamma distribution was assumed for variances 

as these could only take on positive values.  

Model parameters were estimated using Markov Chain Monte Carlo simulation [1]. A 

two chain algorithm of 400 000 iterations with an initial burn-in of 20 000 iterations was run. 

Convergence was assessed by the Gelman and Rubin diagnostic [8]. 

 

OpenBugs code for the CAR model 

 
#Childhood diseases associated with U5fever 
#CAR Logistic regression model with spatially varying effects of diseases at the regional level 
 
#Likelihood 
 
model { 
for (i in 1:M)  #M is the number of observations in the sample 
{ 
 
had_fever[i]~dbern(p[i]) 
logit(p[i])<-b0 + part1[i] + part2[i] + part3[i] + part4[i] + part5[i] + part6[i] + part7[i] + part8[i] + part9[i] + 
part10[i] + part11[i] + part12[i] + part13[i] + part14[i] + part15[i] + w[clust_id[i]] 
 
part1[i] <- b[1]*savanna_d[i]  
part2[i] <- b[2]*lstn[i] 
part3[i] <- b[3]*pct_Water[i]  
part4[i] <-b[4]*p_soap_water[i] 
part5[i] <-b[5]*equals(water[i],1) 
part6[i] <-b[6]*equals(cook_fuel[i],1) 
part7[i] <-b[7]*equals(married[i],1) 
part8[i] <-b[8]*equals(occupat[i],1) 
part9[i] <-b[9]*equals(reside[i],1) 
part10[i] <-b[10]*equals(wealth_ind[i],1) + b[11]*equals(wealth_ind[i],2) +b[12]*equals(wealth_ind[i],3) 
         +b[13]*equals(wealth_ind[i],4)  
part11[i] <- b[14]*p_rece_bcg[i]  
part12[i] <-b[15]*equals(month_cat[i],1) + b[16]*equals(month_cat[i],2) + b[17]*equals(month_cat[i],3) 
+        b[18]*equals(month_cat[i],4) + 
b[19]*equals(month_cat[i],5)  
part13[i] <-(b1+ aw1[region[i]])*equals(malaria[i],1) 
part14[i] <-(b2+ aw2[region[i]])*equals(all_ari[i],1) 
part15[i] <-(b3+ aw3[region[i]])*equals(diarrhoea[i],1) 
} 
 
#Priors for betas 
b0~dnorm(0,0.01) 
 
for (i in 1:19) { 
b[i]~dnorm(0,0.01) 
} 
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for (i in 1:19) { 
or_b[i]<-exp(b[i]) 
} 
 
 
### CAR Spatial covariates for malaria  prevalence  
 
for(i in 1:sumNumNeigh){ 
 weights[i]<-1 
 } 
 
#Malaria 
b1~dflat() 
aw1[1:numRegions]~car.normal(adj[], weights[],num[],tau.car1) 
tau.car1 ~ dgamma(2.01,1.01)  
sigma.car1 <- sqrt(1/tau.car1) 
 
#ORs of malaria at national and regional level 
hrb1<-exp(b1) 
for (i in 1:15){ 
or_aw1[i]<-exp(aw1[i]) 
} 
 
#Symptoms of acute respiratory infections 
#all_ari 
b2~dflat() 
aw2[1:numRegions]~car.normal(adj[], weights[],num[],tau.car2) 
tau.car2 ~ dgamma(2.01,1.01)  
sigma.car2 <- sqrt(1/tau.car2) 
 
#ORs of all_ari at national and regional level 
hrb2<-exp(b2) 
for (i in 1:15){ 
or_aw2[i]<-exp(aw2[i]) 
} 
 
#diarrhoea 
b3~dflat() 
aw3[1:numRegions]~car.normal(adj[], weights[],num[],tau.car3) 
tau.car3 ~ dgamma(2.01,1.01)  
sigma.car3 <- sqrt(1/tau.car3) 
 
#ORs of diarrhoea at national and regional level 
hrb3<-exp(b3) 
for (i in 1:15){ 
or_aw3[i]<-exp(aw3[i]) 
} 
 
#Geostatistical random effects at cluster level 
w[1:N]~spatial.exp(mu[], longnum[], latnum[], tau.sp, phi, 1) #N=number of clusters 
 
for (i in 1:N) { 
   mu[i]<-0 
   } 
 
tau.sp~dgamma(2.01,1.01) 
sigma_sp<-1/tau.sp 
phi~dunif(0.4558796,312.764) 
phi.inv<-1/phi 
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Range<-3/phi 
#(phi in Winbugs is rho in the notes and tau=1/sigma^2) 
}  
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Table S1. Coverage of interventions at national and regional levels, Uganda DHS 2016 

 

Geographical 
scale 

INT coverage (%) Vaccination coverage (%) WASH practices coverage (%) 

%hh1itn %hh1itn4two %pp1itn %ppslept %chslept %itnused BCG DPT Polio Measles Water Sanitation Soap/deter
gent water 

National 78 51 65 55 62 74 96 80 70 80 78 19 44 

Regions              

Kampala 75 58 66 60 69 81 99 82 59 83 94 24 71 

Central 1 79 59 70 59 67 77 93 76 64 76 70 33 58 

Central 2 75 50 65 53 63 73 95 78 59 73 72 31 57 

Busoga 75 48 61 52 58 77 97 72 57 70 90 29 22 

Bukedi 74 41 54 42 49 69 98 78 62 77 94 15 54 

Bugisu 72 39 55 52 60 85 99 73 58 80 84 7 27 

Teso 84 48 64 62 72 87 99 92 78 87 95 16 16 

Karamoja 55 23 36 33 47 68 99 86 78 91 87 2 15 

Lango 79 47 63 53 66 77 96 79 65 75 85 9 23 

Acholi 81 41 58 59 68 83 99 85 80 85 81 9 22 

West Nile 92 61 77 71 77 73 96 83 74 82 85 4 37 

Bunyoro 76 49 62 57 60 77 98 79 75 84 77 15 38 

Tooro 77 49 63 50 53 67 96 76 62 87 63 11 57 

Ankole 85 58 74 55 58 65 97 84 76 82 53 15 37 

Kigezi 89 68 79 55 60 57 98 89 78 96 64 15 31 
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Table S2. Coverage of treatments and health care seeking at national and regional levels, 
Uganda DHS 2016 

ARI; symptoms of acute respiratory infections, Antibiotics; Percentage of fever children receiving 

antibiotics, ORS or RHF; Percentage of children with diarrhea receiving fluid from oral rehydration 

solution (ORS) sachets or recommended home fluids (RHF), ACT; Percentage of children receiving 

artemisinin-based combination therapy (ACT) among those with a fever who took any 

antimalarial drugs (during the 2 weeks period before the survey), Rapid diagnostic test (RDT); 

Percentage of fever children who had blood taken from a finger or heel for malaria testing, Fever 

advice; Percentage of fever children for whom advice or treatment was sought from health provider, a 

health facility, or a pharmacy, ARI advice; Percentage of children with symptoms of ARI for whom 

advice or treatment was sought from health provider, a health facility, or a pharmacy and Diarrhoea 

advice; Percentage of children with diarrhea for whom advice or treatment was sought from health 

provider, a health facility, or a pharmacy. 

 

  

Geographical 
scale Treatments coverage (%) Health care seeking coverage (%) 

Antibiotics ORS or RHF ACT RDT Fever advice ARI advice Diarrhoea advice 
National 29 49 88 49 81 80 71 

Regions        
Kampala 46 45 72 55 92 88 71 
Central 1 19 53 81 59 88 80 66 
Central 2 28 48 90 43 89 85 68 
Busoga 37 53 91 43 78 81 72 
Bukedi 43 56 89 34 79 81 73 
Bugisu 18 40 86 36 91 76 69 
Teso 36 31 89 44 64 70 61 
Karamoja 26 81 93 68 90 84 85 
Lango 20 36 87 49 82 83 86 
Acholi 26 55 91 67 85 95 78 
West Nile 24 56 90 57 90 93 80 
Bunyoro 13 55 90 48 73 93 75 
Tooro 16 59 86 57 74 69 65 
Ankole 32 30 71 47 80 81 64 
Kigezi 21 59 59 37 80 74 71 
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Table S3. Posterior inclusion probabilities for diseases, interventions, treatments, health care 
seeking, socio-demographic and environmental/climatic factors 

Variable Inclusion 
probability (%) 

Variable Inclusion 
probability (%) 

Diseases  Household factors  
Malaria  100.0* Stool disposal  2.0 
All ARI  100.0* Climatic/environmental factors  
Diarrhoea 100.0* Land cover  

ITN ownership  % surface covered by forest within a 5km 
buffer 

38.3 

None 95.1 % surface covered by water within a 5km 
buffer 

88.5* 

%hh1itn  1.0 % surface covered by crop within a 5km 
buffer 

34.0 

%hh1itn4two  1.8 Rural or urban 47.8 
%pp1itn 2.1 LST day  

ITN use   None 100.0 
None 92.4 Linear 0.0 
%ppslept  0.8 Categorical 0.0 
%chslept 0.6 LST night  
%itnused 6.2 None 0.0 

Vaccinations  Linear 100.0* 
BCG 83.0* Categorical 0.0 
DPT 1.0 NDVI  
Polio 1.0 None 70.8 
Measles 2.0 Linear 29.2 

Treatments  Categorical 0.0 
ACT  6.0 Rainfall  
Antibiotics  1.4 None 91.8 
ORS or RHF 1.2 Linear 8.2 

WASH practices  Categorical 0.0 
Water 98.0* Altitude  
Sanitation 28.0 None 59.0 
Soap/detergent and water 93.0* Linear 41.0 

Health care seeking   Categorical 0.0 
Rapid diagnostic test  2.0 Distance to forest  
Fever advice  2.0 None 98.0 
ARI advice  0.0 Linear 2.0 
Diarrhoea advice 1.0 Categorical 0.0 

Socio-demographic factors  Distance to water  
Child factors  None 89.2 

Sex 3.4 Linear 10.8 
Age of child  Categorical 0.0 

None 0.0 Distance to savanna  
Linear  0.0 None 49.8 
Categorical  100.0* Linear 50.2* 
Residence 88.3* Categorical 0.0 

Maternal factors  Distance to crops  
Education level  18.0 None 67.2 
Marital status  100.0* Linear 32.8 
Occupation 100.0* Categorical 0.0 

Household factors    
Wealth index  100.0*   
Type of cooking fuel   55.0*   

*Included in the final model with a probability ≥ 50% 

 


